Digital Video Conversion
For the Small Shop
OUTLINE

• Introduction
• Experiment Concept
• Experiment Examples
• Explanation of Results
• Recommendations
• Questions
INTRODUCTION

• Reasons for experiment and presentation
 – Digitizing is what we do
 – Personal evaluation of best conversion methods
 – Video is a very complex subject
 – Engineering/ Mathematics/ Computer Science
BEFORE WE START....

Lets take a minute talk about our previous knowledge of

• Video Production
• Video Conversion
EXPERIMENT CONCEPT

• Converting VHS to DVD
• Utilizing consumer level products
• Choosing three different methods
• Analyzing results
WHY CONVERT

- Inherently self detrimental
- Low life expectancy
- Obsolete players
VHS DEGRADATION

• Playback causes damage
 – Loss of magnetism
 – Loss of emulsion
 – Tape stretching
LIFE EXPECTANCY

- Low life expectancy
- 10-15 years
- Optimal condition
 - Particle free
 - 60-70 degrees
 - 30% to 70% constant RH
VHS OBSOLETE!

• Most electronics stores only carry a few VHS players.
• Quality players are becoming harder to find
Now that we know why, How do we do it?
CONSUMER PRODUCTS

• VHS to DVD Recorders
• Conversion boxes
• Camcorders
VHS TO DVD RECORDERS

• One touch dubbing
• Record as well as playback
• Reasonably priced $80-$400
CONVERSION BOXES

• Compact
• Transfers any analog signal to digital
 – VHS to Camcorder
 – VHS to DVR
 – VHS to Computer
 – Wide price range $17-$1500
CAMCORDERs

• Conversion
• Record
• Playback
• Back up on digital tape
• Several models and prices
• Can be output to other devices
 – TV, VHS, DVR or Computer
CONVERSION METHODS

• DVD Recorder / Sony RDR-VX515
• Conversion Box/ Canopus 100
• Lower priced Camcorder/ Canon ZR700
• High Priced Camcorder/ Canon GL1
ANALYSIS PROCESS

• Use each method to convert VHS to DVD
• Analyze DVD footage for
 – Picture quality
 – Color quality
 – Digital Artifacts
DVD RECORDER
EXAMPLE
CONVERSION BOX
EXAMPLE
LOW PRICED CAMCORDER EXAMPLE
HIGH PRICED CAMCORDER EXAMPLE
COMPARISON

Canopus

Sony Recorder
COMPARISON

Canopus

Sony Recorder
COMPARISON

Canopus

Sony Recorder
COMPARISON

Canopus
X-30, y-20 = R149, G140, B157

Sony Recorder
X-30, y-20 = R140, G143, B153
CAMCORDERS

Canon GL1 Canon ZR700
CAMCORDERS

- Canon GL1
- Canon ZR700
CAMCORDERS

Canon GL1

Canon ZR700
CAMCORDERS

Canon GL1
X-30, y-20 = R177, G181, B190

Canon ZR700
X-30, y-20 = R172, G172, B184
ALL FOUR

<- Canopus
Sony Recorder ->

<- Canon GL1
Canon ZR700 ->
ALL FOUR

<- Canopus
X-30,y-20 = R149,G140,B157

Sony Recorder ->
X-30,y-20 = R140,G143,B153

<- Canon GL1
X-30,y-20 = R177,G181,B190

Canon ZR700 ->
X-30,y-20 = R172,G172,B184
Digital Artifacts
Prediction Errors that occur during video compression which is inherently "lossy"
WHY LOSSY COMPRESSION

• Storage has not yet reached the level needed to store the amount of bits needed to be a lossless copy of a moving image original.
A digital equivalent of a single film frame needs to be scanned at around 3000 ppi. A single negative scanned at the closest size of 3400 ppi would give a 28.8 MB image file when saved in tiff format. To transfer this information to a strip of motion picture film, one would need 24 fps x length. So a 2 hour silent film would be 24 fps x (60 sec x 60 min x 2 hrs) = 172800 images. At 28.8 MB per image that would require 4976640 MB or 4.9 TB for storage.
DONT FORGET LOSSY

90 minutes of raw video footage from a mini-dv tape equals approximately 16 gigabytes of storage space.

Single layer DVD’s 4.7 gigs = 70% compression ratio
Dual layer DVD’s 8.5 gigs = 47% compression ratio
Compressors use an algorithm to analyze the pixels of an image in a Zig-Zag method.

This data is then used to predict the proceeding images.
This is an image showing how motion prediction is accomplished during the compression process.

“I” frames
are analyzed independently for data content.

“P” frames
can contain image data and motion data.

“B” frames
can contain image data and motion data.

MPEG display order

- Forward prediction of P–frames
- Forward prediction of B–frames
- Backward prediction of B–frames
MORE EXAMPLES

Now that we know a little bit about how video is compressed, let's look at some comparisons.
RAW COMPARISON

Canon ZR700 DVD

Canon ZR700 RAW
RAW COMPARISON

Canon ZR700 DVD
X-30, y-20 = R172, G172, B184

Canon ZR700 RAW
X-30, y-20 = R170, G170, B182
RAW COMPARISON

Sony Recorder
X-30, y-20 = R140, G143, B153

Canon ZR700 RAW
X-30, y-20 = R170, G170, B182
RAW COMPARISON

Sony Recorder

Canon ZR700 RAW
RAW COMPARISON

Sony Recorder

Canon ZR700 RAW

400% enlargement
RECOMMENDATIONS

• Use a camcorder with A/V inputs
• Store at least three copies
 – Original
 – Mini-dv
 – DVD
THINGS TO REMEMBER

• Find bench test/technical reviews
• Having more than one format is important
• Remember to plan for the future
 – Bluray and HDDVD hold 6-10 times more than single layer DVDs
Questions Anyone?