Curation
- Define and enforce management and preservation requirements
- Facilitate authenticity verification for all artifacts and collections
- Facilitate rights management for all artifacts and collections
- Identify or flag materials that might need redaction
- Identify or flag redundancy or duplicates
- Provide aging information on artifacts and collections.
- Support export capabilities to common file types
- Support the use of dark archival (non-sharable) archives
- Support the use of verified and unverified tags
- The use of artifacts and collections must adhere to donation restrictions

Ingestion
- Allow bulk upload in variety of formats
- Allow users to add to the collections
- Capture GIS information for relevant artifacts or collections
- Provide automated classification of artifacts
- Provide capability to update a collection automatically
- Provide import capabilities for common file types

Metadata
- Allow for specific schemas for different disciplines
- Allow tags to be defined/customized to the researcher’s reading
- Freeform categorization - owner / viewer / creator / interpretation
- Include social media conventions such as: number of views, ratings, tags, and comments.
- Move between ad hoc and systematized tagging keywords and classification
- Provide capability for designating visual or spatial orientation of artifacts, artifact content
- Provide capability to organize administrative portion of schema
- Support multi-dimensional tags
- Support multiple creation dates for artifacts
- Support Dublin Core, OAI and other open data standards

General
- Supports audio and video streaming
- Supports classroom work
 - collaborative interface - have students crowdsourcing evaluating artifacts (e.g. photos)
 - supports collaboration and crowdsourcing scenarios to assess class work room as: meeting or exceeding requirements, exceeding prior instances, meeting qualitative criteria
 - use of workflow to move evaluated artifacts into professor’s queue
 - separate metadata levels for instructor and student
 - integration of school/class/enrollment information; information is automatically imported into repository

Security, Reporting, and Quality Assurance
- Seven security requirements, two reporting requirements, and three quality assurance requirements.

Visualization
- Capabilities for visualizations to be saved, retrieved, and linked to
- Generate time and space visualizations based upon multiple criteria
- Allow visualizations (statistical or spatial) with overlays.
- Depict relationships of distance and proximity
- Discern shape of an entire collection
- Easy ways to graph for visual display
- Support social network visualizations abstractly, also over time and across space
- Provide access to stitching tools
- Provide capability as a publishing platform
- Show visual morphing over time
- Support the use of heat maps
- Allow export of visualizations in standards formats (.pdf, .gif)

Search
- Provide capability to generate result sets, tables, graphs, timelines, auto-generated stable url for search results
- Ability to “learn” from user behavior or prior user searches
- Ability to infer interesting keywords
- Ability to predict what might be valuable or interesting
- Allow a search scenario that returns all sources given certain tabs or tab combinations
- Allow capability for tags to infer metadata
- Allow for both general public queries and more sophisticated digital humanities (DH) projects. Accordingly, must have portal to allow for differing levels of interaction with collections and tools so as to emphasize ease of use for more casual users and fine-grained flexibility for expert users.
- Allow for flexible search, both through menu interface for novice users and regular expressions for advanced users
- Allow for searching and analysis of ingested and affiliated collections. Solution must therefore have retention policy and other assurances (formatting, metadata, etc.) regarding both kinds of collections.
- Identify similar or related research projects and their researchers
- Searches can infer/recommend additional related sources
- Searches can infer/recommend additional related topics
- Searches can infer/recommend additional research projects.
- Support syntactic interpretation

User Interface
- Low threshold of expertise to use (i.e. little or no training required)
- Provide a full feature, web-based application through a best practice graphical user interface (i.e. rich internet application with searchable pick lists, filtering pick lists, appropriate preservation of screen data as end user navigates through the system, coherent error messages, etc.)
- Provide capability to infer color from black-and-white
- Qualitative brief - to skim the meaning of the artifact or the collection, identify relationships between artifacts - parent / part of network / missing relational items
- Supply COinS (ContextObjects in Spans) metadata and clickable citation information for all pages, search results
- Compatibility with Web Accessibility Initiative (WAI)
- Provide clipping services
- Support multiple languages

Socialization
- Allow for individual accounts to save searches, search results, communications with other users
- Allow for notes and comments to be graded with keywords to tags
- Facilitate and encourage scholarly communication and sharing
- Incentivize submission of content (like Flickr or Picasa)
- Rate/comment/tag the quality of the artifact/collection

Architecture/IT Environment
- Balance metadata need and the volume content - aim for "protein" metadata
- Build and leverage on existing products already in use
- Handle complex or compound objects (multiple data types within a single object) ideally to be open-source, and at least useable as a model for other implementations.
- Implement a hybrid approach to metadata model - leveraging strengths of both central and distributed architectures and minimizes risk.
- Provide adequate backup and restore procedures to protect against loss of data due to accidental user actions, database corruption, hardware failures, and disaster recovery scenarios.
- Provide well documented APIs
- Support for distributed repositories / heterogeneous content
- Device agnostic: adherent to latest internet standards
- Support OAI and other open data standards
- Support synchronization across devices - mobile, tablet, cell phone, laptop
- Support the use of add-ons or plug-ins
- Support web 2.0 collaborative, online publication tools.
- Utilize a distributed platform
- Utilize cloud architecture for cost and maintainability

Scholar's Dashboard

A series of workshops held in 2012-2013 of humanities scholars, librarians and archivists, and technologists to generate functional and technical requirements for the next generation of online repositories.

www.scholarsdashboard.org

Project Director: Gwen Evans
Project Manager: Andrew M. Schockey

Scholar’s Dashboard was made possible in part by the National Endowment for the Humanities: Exploring the human endeavor